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CHAPTER 1.  

INTRODUCTION 
 

 

Statement of the Problem 

 

For over a century, eye tracking has helped experimenters determine what an 

individual views, providing clues to what the subject could be cognitively engaged in.  

However, questions remain as to what metrics work best in determining subject state and, 

more specifically, subject workload.   

 

Proposed Solution Approach 

 

The basic metrics within eye tracking, such as saccadic movement, fixations and 

link analysis provide clear measurable elements that experimenters could use to create a 

quantitative algorithm that reliably classifies operator workload.  

Because eye tracking allows for non-invasive analysis of pilot eye movements, 

from which a set of metrics can be derived to effectively and reliably characterize 

workload, this research will generate quantitative algorithms to classify pilot state 

through eye tracking metrics.  Through the use of various eye tracking metrics and 

measures, a correlation between these components will be regressed against pre-

determined workload levels as well as self-reported subjective workload ratings in 

varying flight deck test scenarios.  This will improve existing knowledge of eye tracking 

in flight deck operations and will provide further advancement in the quest for operator 

state classification.   
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Contributions 

 

Practical contribution 

Operators in today’s aircraft flight decks find themselves in various situations that 

change their cognitive workload.  Research to improve the interaction between the 

operator and the aircraft interface will benefit by being able to analyze operator state 

quantitatively as opposed to the historical standard of subjective feedback.  This 

eliminates the subjective bias across subjects and standardizes feedback to provide more 

accurate analysis of operator state in different testing scenarios in flight deck operations.  

This research is somewhat flight deck specific due to some of the eye tracking measures 

being specific to flight deck operations, such as entropy, which is dependent on flight 

task.  However, some of the eye tracking metrics that are used to determine workload are 

common across interfaces, such as fixation duration and blink rate.   
 

Theoretical contributions 

Current avionics are not aware of pilot real-time capabilities and limitations 

resulting from varying workload levels.  There exists the potential in various phases of 

flight and circumstances for information overload in flight deck operations.  Several 

systems within the flight deck itself, such as the flight management system and tethered 

autopilot, are very effective at making easy procedures easier and hard operations harder 

in such circumstances; such is the case when unexpected occurrences happen in flight.  

When the avionics being unaware of pilot state, it is impossible for the avionics to 

provide dynamic displays that provide the proper information in the proper context and 
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with appropriate levels of automation for various situations based upon the pilot’s current 

abilities.   

The concept of the intelligent flight deck is currently being pursued by the 

National Aeronautics and Space Administration (NASA), with specific interest in 

characterizing operator state in flight deck operations.  The goal is to use operator 

workload and overall cognitive state effectively to optimize the flight deck interface.   

Eye tracking as a remote unattached sensor providing a non intrusive solution that 

is fully deployable in future flight decks with minor changes to current setup.  NASA’s 

IIFD objective to characterize operator state will be supported by these eye movement 

behavior based workload algorithms.  
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CHAPTER 2.  

BACKGROUND 

 

Review of Technical Literature 

Mechanism of visual search 

 

 Basic visual search is comprised of two components: fixations and saccadic 

movements.  A fixation is a set of look-points or a series of eye gaze vector data points 

that is focused on a stationary target in the person’s visual field (Applied Science 

Laboratories, 2007).  A fixation is the duration of time for which an individual is visually 

collecting and interpreting whatever information is available within the foveal range of 

the eye.  When the fixation is made on a point close to the individual, such as on a flight 

deck, visual angle decreases significantly depending on the distance from the eye.  The 

central 1.5 degrees of visual field have a visual resolution many times greater than that of 

the peripheral vision (Rao, Zelinsky, Hayhoe, & Ballard, 1997).  This region of resolution 

is the only field in which the eye is capable of interpreting fine resolution information, 

such as words in a book.  Converting the reading information analogy to that of heads 

down displays on a flight deck, the highest resolution necessary of any eye tracker needs 

to be at least within two degrees visual angle (Rayner & Bertera, 1979).  Various 

components of eye fixations are the duration, the frequency, and the location in which 

they are made.  
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Figure 1. Anatomy of the Human Eye 

 
 

The eye movement from one fixation to the next is called a saccade.  A saccade 

connects one fixation to the next, and can be measured in terms of radial degrees.  

Different components to a saccade include the length of the saccade (visual angle), the 

speed of the saccade in degrees per second, and the direction of the saccade.  When 

reading, the eye makes rapid movements, as many as four to five per second, moving 

from one fixation to the next, focusing on a few words each time (Rayner & Bertera, 

1979).  The eye does not transmit visual signals to the brain when making a saccade.  

Therefore, a saccade is made each time information is obtained from one fixation and 

another fixation is necessary to observe further information elsewhere.   

Combining saccadic movements and their associated fixations a scan pattern or 

scan path emerges.  Since fixations only cover a finite space filled with information, 

saccadic movements trace the area of desired information so fixations can collect all the 

information necessary for the brain to interpret the overall image.  Previous research 

provides two suggestions connecting saccadic movements and fixations, concluding on 

the meaning of scan paths: one proposal indicates that saccadic movements’ resulting 

fixations allow for the formation of visual-motor memory to encode objects and scenes 
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(Noton & Stark, 1971).  Another proposal originating from work done by Yarbus 

suggests that changes in fixations are most commonly associated with the dynamic 

demands of a given task (Yarbus, 1967).   

 

Impact of individual differences 

 

 There are several components to the differences in eye tracking performance and 

movement behavior observed across individual subjects:  Experience of the subject in 

performing the given task, physical differences (e.g. Blue versus brown eyes), and 

environmental condition differences (e.g. vibration).  Experience related differences 

cannot be changed without future manipulation of the pilots themselves through 

increased training and experience.  The easiest target to minimize individual changes is 

the physical-related differences by simply screening subjects to fit the optimal 

specifications that work well with the eye tracker.   

 

Experience-related differences 

 

 The quality of the eye tracking itself is not affected by differences among pilots’ 

experience, however, the eye tracking metrics themselves can be drastically different.  

Past research has demonstrated the difference between novice and more experienced 

participants in various usability studies (Fitts, Jones, & Milton, 1950); (Crosby & 

Peterson, 1991); (Card, 1984); (Altonen, Hyrskykari, & Raiha, 1998).  Common effects 

are observed in fixation durations, number of fixations, saccadic movements, and scan 

pattern changes.  Experienced pilots will typically be more comfortable while performing 

a flight task with a basic knowledge of what they need to look at to obtain the 
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information they need.  This increases the efficiency of their eye behavior, resulting in a 

difference in eye tracking metrics in contrast to a novice pilot.   

   

Physical-related differences 

 

 Subject’s eyes are of paramount concern due to the variance in quality of eye 

tracking data that can be obtained due to physical differences in the eyes themselves.  

Subjects with a history of ocular trauma, various ophthalmological diseases (previous or 

current), lazy eyes, pathologic nystagmus or other ocular disorders, and different forms of 

corrective lenses including both eyeglasses and contact lenses are likely to cause issues 

for researchers attempting to obtain consistently high quality eye tracking data.  Because 

of this, it is highly recommended that researchers screen their subjects prior to 

participation in any eye tracking study to ease the effort required to collect quality eye 

tracking data from their eye tracker.   

 Pupil color greatly impacts the quality of eye tracking for many eye trackers.  

High precision eye trackers require a sharp contrast between the pupil and the iris.  Bright 

pupil systems require direct infrared reflection off of the retina therefore, subjects with 

blue eyes are often times easier to track.  This is due to blue eyes containing less IR-

reflective melanin in the iris.  In contrast to this, brown or hazel eyes are usually ideal for 

eye tracking systems that utilize a dark pupil contrast. (Boyce, Ross, Monaco, Hornak, & 

Xin, 2006); (Wang, Lin, Liu, & Kang, 2005).   

 Pilots who may be sleep deprived also pose another form of problem.  Eyelid 

closure can become an issue when the eyelid itself begins to cover portions of the pupil.  

Many remote eye trackers can operate with some part of the pupil being covered, but a 

majority must still be shown in order for the processing algorithms to calculate the 

circular center of the pupil that is used as an integral part of gaze vector calculation.   
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 Corrective lenses, such as glasses, pose reflection issues that pose as the biggest 

threat to eye tracking quality.  Lenses posing the largest problem are lenses with hard-

edged bi- or tri-focal lenses due to distortion of the eye image as seen from the 

perspective of the eye tracking cameras.  Distortions typically occur due to lens shape, 

causing problems with systems using corneal reflection, bright retinal reflection, dark 

pupil circle, limbus or iris features, etc.  Soft contact lenses typically do not cause 

problems however, hard contacts can cause edge problems in bright pupil systems 

typically caused by dirt or dust trapped beneath the lens.  Typically single vision 

corrective eye glasses do not cause problems unless they have an anti-reflective coating.  

Lenses with curved front surfaces will often times because of problems caused by 

reflecting the infrared source back into the camera.   

 

Environment-related differences 

 

 There exist several environmental factors that can become problematic to the 

testing environment incorporating an eye tracker.  Many of these issues are observed in 

dynamic location flight decks, such as that of an actual aircraft flight deck that would 

experience varying light conditions, turbulence, and other vibration effects that move the 

pilot’ head relative to the eye tracking camera.  Since the system is based upon visual 

contrast, extreme light behaviors pose the greatest threat; usually the only problem in 

fixed base simulators such as OPL’s 737-800 simulator. 

Problems associated with extreme ambient light include; too small of pupil 

diameter, squinting that places the eyelid over the pupil, glare that causes the pilot to 

change their eye tracking behavior, and degradation of the eye tracker ability to detect 

features of the face for head tracking purposes.  Thankfully, in most simulators the 

ambient light levels are easily controllable, making it simple to adjust light to be 
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sufficient for normal operations on the flight deck but limiting it enough to optimize eye 

tracker abilities.  This is not as easily controlled in actual flight decks, resulting in other 

forms of light mitigation that does not impede the pilot’s ability to fly under normal 

conditions. 

  

Existing eye tracking metrics, trends and measures 

 

 There exists several different metrics researchers have used over the years to 

conduct research in the field of eye tracking.  One challenge is to identify which metric or 

combination of metrics is strongly correlated with subjective and objective measures of 

workload.  Depending on the theory of data interpretation, a researcher can infer many 

things from the eye tracking data set they are analyzing.  An eye tracking literature 

review by Jacob and Karn identified three theories of eye tracking data analysis (Jacob & 

Karn, 2003):  
 

• Top-down based on cognitive theory:  “Longer fixations on a control element in 
the interface reflect a participant’s difficulty interpreting the proper use of that 
control.” 
 

• Top-down based on a design hypothesis:  “People will look at a banner 
advertisement on a web page more frequently if we place it lower on the page.” 
 
 

• Bottom-up:  “Participants are taking much longer than anticipated making 
selection on this screen.  We wonder where they are looking.”  
 

 

It is easy to approach a research objective with the top-down cognitive theory in 

mind.  Researchers may have a general idea of how a subject will react, and will look for 

trends that prove that hypothesis.  However, the bottom up approach can lead to new 

methods of analysis.  Post-run analysis can lead to indications of why a subject, in this 

case a pilot, would spend more time on the attitude indicator than the airspeed indicator, 
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both of which are of high importance.  The answers to such questions can lead to further 

understanding of pilot workload, and what is consuming their cognitive capacity and 

why. 

 Initial research in literature review will follow a top-down cognitive theory 

approach to identifying eye tracking metrics from a simple view of quantifying the raw 

data collected during this study.  Understanding how the research team is attempting to 

interpret the data is important in determining not only what metrics to use but also how 

they will be used.   

NASA Langley Flight Research has conducted several eye tracking studies in the past 

resulting in a basic starting platform to compile metrics for many future research 

initiatives.  From this research, a series of basic definitions is utilized to quantify various 

sets of eye tracking data:  
 

• Average Dwell Time – The total time spent looking at an instrument divided 

by the total number of individual dwells on that instrument.   

• Dwell percentage – Dwell time on a particular instrument as a percent of total 

scanning time. 

• Dwell Time – The time spent looking within the boundary of an instrument.   

• Fixation – A series of continuous lookpoints which stay within a pre-defined 

radius of visual degrees. 

• Fixations per dwell – The number of individual fixations during an instrument 

dwell. 

• Glance – A “subconscious” (i.e., non-recallable) verification of information 

with a duration histogram peaking at 0.1 seconds.  (also referred to as an 

“orphan”) 

• Lookpoint – The current coordinates of where the pilot is looking, frequency 

of data points depending on the eye tracking system used. 

• One-way transition – The sum of all transitions from one instrument to 

another (one direction only) in a specified instrument pair.   
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• Out of track – A state in which the eye tracking system cannot determine 

where the pilot is looking, such as during a blink or when the subject’s head 

movement has exceeded the tracking capabilities of the system setup.   

• Saccade – The movements of the eye from one fixation to the next.  Also 

considered to be the spatial change in fixations. 

• Scan – Eye movement technique used to accomplish a given task.  Measures 

used to quantify a scan include (but are not limited to) transitions, dwell 

percentages, and average dwell times. 

• Transition – The change of a dwell from one instrument to another. 

• Transition rate – The number of transitions per second. 

• Two-way transition – The sum of all transitions between an instrument pair, 

regardless of direction of the transition.   

(Harris, Glover, & Spady, 1986) 

 

 
Area of Interest 

 

 Areas of interest are regions specified over a field of view that hold significant 

meaning or indicate a specific source of information.  The definition of areas of interest is 

at the discretion of the researcher.  It is critically important to specify what that area of 

interest represents in order to compile meaningful results.  Areas of interest are very task 

specific, depending on what form of visual scan will be required to complete the task, and 

what interface is being used (Jacob & Karn, 2003).  In flight, regions of interest often 

include the heads down displays, often broken down into smaller regions including the 

airspeed indicator, altimeter, attitude indicator, heading indicator, etc. 

 The limiting factors to the area of interest definition rest solely on the capabilities 

of the eye tracking system being used.  An area of interest can only be as small as the eye 

tracking system has consistently high performance accuracy of eye gaze vectors.  The 

smaller a region of interest, the more accurate a system must be to identify a person’s eye 
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gaze within that region.  An area of interest must be specific enough to include the 

important details of a test platform’s field of view, but must not be so specific that no 

meaningful data is attainable due to the noise of eye tracker inaccuracy.  

 
Fixations 

 

 Eye fixations are defined as “a relatively stable eye-in-head position within some 

threshold of dispersion (~2 deg) over some minimum duration (200ms), and with a 

velocity threshold of 15-100 degrees per second” (Jacob & Karn, 2003).  Several studies 

have been conducted utilizing eye fixation measures.  The total number of fixations has 

been observed to correlate negatively with efficiency; however, efficiency is seen to 

correlate negatively with workload (Goldberg & Kotval, 1998).   

Total fixations is very dependent on the length of the test run as well, so 

normalizing it in some fashion to be an applied metric across subjects is necessary.  This 

leads to another metric, fixation frequency that shows a positive correlation to subject 

workload similar to fixation total.  Fixation frequency has shown to indicate more 

effortful search, indicating poor performance accuracy and longer search times in 

memory tasks (Van Orden, Limbert, Makeig, & Jung, 2001). 

Fixation duration, including the mean and maximum duration, indicates increased 

workload in flight simulator task research.   Longer fixations are indicative of increases 

in cognitive processing loads during a period of time (Callan, 1998).  Again, analysis is 

done using frequency to determine the variance of fixation duration relative to that of the 

entire data collection.  Analysis can be comparative to a single pilot alone or across a 

pilot population.  Factors to consider are the individual differences across pilots’ 

experience and individual scenario situations.   
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Gaze 

 

 Very similar to the fixation metric, gaze analyzes the grouping of fixations within 

a single region of interest.  Much of Fitts’ research focused on analysis of the gaze 

metric, including gaze rate (# of gazes / minute) on each area of interest, gaze duration 

mean and gaze percentage (proportion of time) in each area of interest for 40 pilots flying 

an aircraft landing approach (Fitts, Jones, & Milton, 1950).  Gaze metrics focus more on 

the area of interest and what it represents, not only the measure of a fixation in any given 

region of space.   

The gaze metric places meaning behind the location of where a fixation occurs, 

with the region for which a gaze is calculated can be of any size depending on the area of 

interest.  Measures within the gaze metric include the number of fixations within a single 

gaze, the total number of gazes, the frequency of gaze and the duration of gaze, including 

the mean and maximum statistics of this single measure (Hendrickson, 1989).   

 
Saccadic Movement 

 

 Measures of saccadic movement are often times neglected in usability research 

initiatives because many of its close relation to fixations measures, which are easier to 

examine are used instead.  There are several metrics available within the realm of 

saccadic eye movements that are unique and potentially useful in studies involving task 

oriented research.  The length of the saccade, as well as the speed of which the saccade is 

made are both very easily calculated measures, simply calculating the distance from one 

fixation to the next in an ordered pair.   

The frequency of longer length saccadic movements could indicate a correlation 

of decreased efficiency, and potentially an increase in perceived workload.  The 
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frequency of specific length saccadic movements requires a limit be set to determine 

what a longer length saccadic movement is.  This is dependent upon the specified areas of 

interest.  Usability research has used the ratio of fixation to saccade times as a measure 

for analysis (Kotval & Goldberg, 1998).  Another method in which to analyze saccadic 

movement is to simply correlate the average saccadic movement distance over a period of 

time and track the changes throughout a test run.  Further research must be done to 

validate the inferences associated with the subsets of saccadic movement metrics.    

 
Scan-Path/Link Analysis 

 

 Several research studies have been conducted that analyze scan-path as it relates 

to efficiency, workload, usability, effectiveness, effort, saliency, and other forms of 

human factors.  Scan-path is often looked at as the measurable window that depicts how a 

subject uses their visual sensory perception to complete any task at hand, carrying with it 

also the distractions and other important artifacts that are included that add or detract to 

an individual’s intention of completing that task.  Scan-path analysis measures the 

transitions between fixations, including measures of transitions between areas of interest 

(link-analysis) as a quantifiable measure.   

 It is particularly useful in bottom-up analysis approaches that seek to identify 

where someone is looking and why, in an attempt to understand the cognitive background 

to an individual’s eye tracking behavior.  Scan-path analysis proves to be critical in 

computational visual modeling, since hysteresis of scan-path can be observed to identify 

if a commonality between tasks exists.  Scan-path direction was used to determine user 

behavior in selecting command buttons using varying strategies of selection (Kotval & 

Goldberg, 1998).  Other uses of scan-pattern include reviewing how individuals read over 

layouts of screen displays (Yamamoto & Kuto, 1992), as well as sweep as an additional 
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scan-path metric indicating a progressive trend in scan-path direction (Altonen, 

Hyrskykari, & Raiha, 1998). 

From a top-down approach scan-path is seemingly less useful.  Issues with real 

time analysis of scan-path as its own metric are that it is difficult to quantify since it is a 

combination of saccadic movements and fixations in a seemingly random sequence.  A 

scan-path can be used to describe the behavior of an individual’s gaze in several areas of 

interest over time, but only once the scan-path has been made, making it a post process 

analytical method.  Attempts to quantify scan-path have been made by indexing spatial 

randomness of scan-path behavior relative to what is expected for the given task (Di 

Nocera, Terenzi, & Camilli, 2006) (see below, Scan-Path Contrast Indexing).   

 
Visual Entropy 

 

Other metrics utilizing the idea of scan-paths have been developed by researchers 

to indicate when a subject’s observed scan-path pattern changes.  Entropy calculates the 

change observed in an individual’s scanning behavior by calculating the standard 

deviation of fixations (randomness) over a previous period of time and determining the 

rate of change of that standard deviation in real time.  Entropy can be observed by 

viewing fixation densities over time, particularly useful when done using a fixation map 

(see below).  Entropy as a correlative metric is approach by inferring that as workload 

increases the observed scan-path becomes less random (Di Nocera, Terenzi, & Camilli, 

2006).  To contrast this inference, research done by Hilburn suggests that a decrease in 

mental workload should increase the randomness of the scan-path behavior (Hilburn, 

2004).   

 

)/1(log2 ii ppHEntropy ∑==  

Equation 1.  Entropy Equation 
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A recent car study utilizes entropy to correlate effectively with a driver’s 

workload by using it as a prediction for where drivers will look depending on the task at 

hand.  By assuming when situations are in high entropy, or high levels of randomness, the 

probability of looking at everything an equal number of times will transition between all 

areas of interest and stimuli at near equal frequencies.  Each area of interest or fixation 

point is associated with a state-space probability of subject focus (pi).  The state-space 

probability changes over time as scan-path trends change, therefore, changing the entropy 

value (H) (Gilland, 2008).  

When focus begins to shift with specific intent due to an induced task or stimuli 

the attention of the subject is directed to a narrower range of fixation points, thereby 

decreasing the calculated entropy value.  This occurs due to the frequency of other 

possible fixations and transitions to other areas of interest decreases (lowering the pi 

value of a given state-space) since a more systematic pattern of fixations emerges when 

the subject is in a state of higher focus or higher workload (Gilland, 2008).  Important for 

the use of real-time calculation of entropy if used for workload correlation is Relative 

Entropy.  This calculates the entropy relative to the highest value observed for that 

particular data set or test run. 

 

 

max/_ HHENTROPYRELATIVE observed=  

Equation 2. Relative Entropy Equation 

 

 

 In contrast to the research that provides evidence supporting a low workload – 

high entropy (increased randomness) correlation, this may not as effectively correlate 
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with tasks on a flight deck.  Pilots are heavily trained on proper eye scan techniques for 

all phases of flight, specifically pilots maintaining an IFR pilot’s license.  Pilots trained 

on instrument flight are trained to look at particular instruments in a specific order to 

ensure that the state of the aircraft is constantly monitored during all phases of flight.  

With this training eye scan patterns will remain very ordered in constant flight conditions 

with no change in pilot demands.  It may be that eye scan will become more random 

when demand is increased and a pilot is unable to pay enough attention to their trained 

eye scan pattern.  Entropy changes will still be associated with changes in flight task and 

workload, but the correlation may not be the same as has been observed in previous 

research. 

 
Blink Rate 

 

 Blink rate has proven to be a metric that correlates with workload regardless of 

the task variance.  Research using air traffic controllers in high and low workload 

situations suggests that increases in workload negatively correlate with blink rate 

(Brookings, Wilson, & Swain, 1996); (Wilson, Purvis, Skelly, Fullenkamp, & Davis, 

1987).  The fundamental belief being that workload is higher requiring more focused 

attention and a general increase in visual load.  Blinks therefore occur less often so it is 

less likely to miss critical information.  This requires the amount of time the eye is 

collecting information to be increased thereby resulting in a decreased blink rate 

(Brookings, Wilson, & Swain, 1996).   

As an active response to pilot workload correlations, blink rate relative to a 

baseline average yields the same inverse relationship as shown in a research study done 

visuospatial memory tasks (Van Orden, Limbert, Makeig, & Jung, 2001).  Other research 

indicates the time between blinks, called interblink interval, positively correlates with 

workload (Brookings, Wilson, & Swain, 1996).  This measure is simply a derivative of 
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the blink rate metric, calculating the time it takes to make a single blink.  With an eye 

tracker that can detect blink rates, blink rate as a metric for analysis proves to be a robust 

option.    

 
Pupilometry 

 

 Pupil changes in dilation and other pupilometry trends have been shown to be 

instigated by changes in cognitive processing.  Pupil diameter has been observed to 

increase with increased cognitive loading in a color coding and symbolic tactical display 

study (Backs & Walrath, 1992).  Using baseline pupil diameter, the relative changes in 

diameter were used to correlate with workload levels of subjects identifying several 

symbols on various displays.  Pupil dilation tends to be indicative of increased demand 

for information processing.   

 There are two forms of pupil changes; dynamic, such as observed in cognitive 

processing of discrete sentences (Just & Carpenter, 1993), or sustained pupil changes as 

seen during digit span recalls (Granholm, Asarnow, Sarkin, & Dykes, 1996).  Depending 

on what type of workload tasks are, the appropriate form of pupillary response is 

collected.  In flight deck operations it is possible for both forms of pupillary responses to 

be present, as pilots are required to both read information form heads down displays as 

well as recall information from checklists and radio calls. 

With information processing becoming the driver for changes in pupil metrics, it 

is not task specific and can be applied as a general correlate to workload.  The same 

correlations are likely to apply across testing platforms (i.e. a flight deck or a computer 

screen).  One setback is the demand for high sample rate of pupilometry data from the 

eye tracker.  Due to the speed at which the pupil diameter changes, sample rates upwards 

of 60 Hz is required to capture sufficient data capable of monitoring significant changes 

pupil dilation (Just & Carpenter, 1993); (Granholm, Asarnow, Sarkin, & Dykes, 1996).   
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Fixation Maps 

 

Fixation mapping is the “analysis of eye-movement traces” of a given scene.  It is 

often considered a more complex eye tracking measure as it requires more complex 

analysis of multiple eye tracking metrics, such as mean fixation duration.  A fixation map 

is used in the quantification of the similarity of traces and the degree of coverage by the 

fixations of a visual stimulus (Wooding, 2002).  By mapping the fixations across a visual 

scene, such as a flight deck, provides a 2-dimensional record of fixations over a specified 

time, tfm.  The timing variable can be changed to incorporate situation specific analysis or 

to analyze the entire test run as a whole.  It depends on the testing scenario as to how long 

a fixation map retains its fixation history.   

 A fixation map is created by giving 2-dimensional coordinates to the fixation 

itself, and then quantifying it by assigning pixel definition ‘d’ to that location.  The 

longer and more frequently a given location is fixated upon the greater the value d is.  

Over time various d values will exist across the fixation map, providing a landscape that 

describes the eye tracking fixation behavior over a given time tfm. 
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Figure 2.  Example of Fixation Map on Standard 737 EFIS PFD 

 
 
 
 

 

Figure 3.   Example of Fixation Map on Standard 737 EFIS PFD 2 
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 Depending on the type of analysis the fixation map ‘d’ values may be normalized 

to make comparison across different fixation maps easier.  To normalize the fixation 

map, the greatest value of d is given a value of 1.  For analysis to determine if a fixation 

map contains a greater number of areas of interest (more fixation clusters), normalization 

is not desirable.  To determine areas of interest as specified by the eye tracking fixations 

a value of dcrit may be assigned to a fixation map indicating where areas of interest exist.  

This value can be shifted to eliminate/create more areas of interest depending on the 

circumstances of analysis.  By increasing dcrit there will be fewer areas of interest 

specified, and in contrast by decreasing dcrit there will be more areas of interest. 

 Analysis to determine visual coverage is done by assigning dcrit and then assigning 

a 1 to all d values greater than dcrit and a 0 to all d values less than dcrit.  The sum of the 

values of the new binary d values divided by the total number of existing d values (the 

area of the map) provides the proportion of the map covered by fixations as prescribed by 

the dcrit assignment (Wooding, 2002).   

 Fixation maps can be further analyzed comparatively by taking the differences of 

d values and creating a new fixation map of differences.  The remainder values indicate 

where there is contrast between the two fixation maps, larger absolute values indicating 

larger variance.  This is done using normalized fixation maps only so relativity is 

maintained between the fixation maps.     

 When analyzing fixation maps it is not the analysis of fixation order, but the 

location of the fixation that is important.  Another method to analyzing fixation maps are 

done by using standard deviation of fixations from a determined mean location.  This is 

essentially determining the dispersion of fixations across a scene which is scene 

dependent and not valid for varying flight deck interfaces.   
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Scan-Path Contrast Indexing 

 

 Analysis of scan path is of specific interest to flight deck operations, since there 

are specific scan paths that are typically taught in flight training of pilots.  A scan path is 

analyzed by first identifying quantitatively the scan-path itself and then contrasting it to 

that of another scan-path.  To determine the differences between scan-paths previous 

research has used an indexing function that compares scan path frequencies in different 

situations, often times varying workload, but can be tailored to fit the analysis required.   

 

 

i(s) = (flow(s) - fhigh(s)) * f(s) 

Equation 3: Scan-path indexing function 

 

 

In the index equation; “(s) is defined as one of the used scan-paths of a fixed 

length, f(s) is the occurrence frequency of the sequence s for the entire scenario, flow(s) is 

the occurrence frequency for the low difficulty level periods, and fhigh(s) is the occurrence 

frequency for the high difficulty level periods”  (Simon, Rousseau, & Angue, 1993).  As 

stated earlier, the difficulty designation can be swapped out for scenario differences to 

create an index contrasting that given scenario.  An i(s) index value near zero indicates 

that the scan-path sequence comparison is not different.  To contrast this, when i(s) is 

negative or positive, the greater the i(s), the more frequent the scan-path s is for the high 

difficulty scenario.   

Simon, Rousseau and Angue’s research indicates that when quantifying scan-path 

as it pertains to workload (difficulty) that there is a greater correlation to ordered scan-

paths during lower workloads, and a more random (trigonometric) scan-path at higher 
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workloads.   Correlation in subject scan-path index regressed against workload varied 

from 8% to 20%, which is still a notable for practical purposes of using the scan-path 

measure.  This indicates that workload can be determined from scan-path.  However, 

Simon, Rousseau and Angue argue that this analysis is tedious to perform and is notably 

more difficult to do automatically as would be desirable.   

 

Analysis and ranking of existing eye tracking metrics 

 

 There are several eye tracking metrics that can be chosen from previous research 

to provide quantitative measures to analyze gaze vector data.  The challenge exists in 

determining what metrics are specific to eye tracking, are general metrics that correlate 

with workload across tasks, and what metrics are simply of no use.  The issue at hand is 

that visual scanning requirements change frequently as a function of the flight maneuver 

task (Hankins & Wilson, 1998); (Itoh, Hayashi, Tsukui, & Saito, 1990).  Metrics must be 

chosen either be task specific, or be applicable to all forms of workload scenarios.  The 

other limiting factor is the capabilities of the eye tracker itself.  If the collection rate is not 

fast enough some metrics will not be effective, such as pupilometry measures that require 

upwards of 60 hertz sample rates.   

  

A compiled list of the core eye tracking metrics has been compiled that are to be 

used for the research initiatives in estimating workload in flight deck operations.  

Advanced eye tracking metrics such as entropy and fixation maps are calculated and 

listed in the data analysis section of this report.  Further definition of utilized metrics can 

be found in the dependent variables section of chapter 3.  These metrics were selected for 

their ability to be utilized not only by themselves, but as composites to more advanced 

metrics.  Fixations and saccadic movements are core metrics due to their being the 
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foundation to the mechanics of eye movement behavior.  Statistical subsets of these two 

metrics are calculated and collected in the data set.   

 Other metrics include link analysis between the various areas of interest 

specified on the flight deck (see dependent variables section below).  Standard deviation 

of the gaze vector location is calculated in real time based on the previous 30 second 

period.  This metric will provide insight into a form of entropy calculation, determining 

the rate of change of the standard deviation values.  To generalize this measure for each 

overall test run, the mean X and Y component gaze vector standard deviation is 

calculated.  This metric derived from scan-path randomness (Di Nocera, Terenzi, & 

Camilli, 2006) and fixation density research (Wooding, 2002) is expected to quantify the 

change of the existing scan-path pattern and scan-path dispersion.   
 

 

 

Table 1. Collected Eye Tracking Metrics 
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CHAPTER 3.  

737-800 FLIGHT DECK EYE TRACKING RESEARCH STUDY 

 

Methodology 

Hypothesis 

 

 The flight simulation provides pilots with a complex flight task that will yield a 

wide variation in relative physical and cognitive workload levels.  This will be used to 

observe pilot’s eye movement behavior under these varying conditions.  From this it will 

show that eye movement measures are affected by task loading. 

 

Apparatus 

 
737-800 Flight Simulator 

 

 Flight testing was conducted in the Operator Performance Laboratory’s 737-800 

simulator.  The 737-800 simulator is comprised of a fully functional flight deck with full 

glass cockpit displays, five outside visual projectors, functioning mode control panel 

(MCP) with autopilot and auto throttle, and standard Boeing 737 controls.  The heads 

down displays (HDD) consist of the left and right seat primary flight displays (PFD), left 

and right seat multi-function displays (MFD), and the engine indicating and crew alerting 

system (EICAS) for a total of five heads down displays.  The simulator is also equipped 

with a control display unit (CDU) with fully functional flight management system (FMS). 
 



www.manaraa.com

26 
 

 
 

 

Figure 4.  OPL 737-800 Flight Deck 

 
 

All HDDs were configured to represent the standard Boeing EFIS display on the 

PFD.  The Boeing EFIS contains several flight critical information gauges within one 

display as shown in Figure 5. PFD EFIS.  This provides the pilot with one display that 

conveys all current state information, focusing the required scan pattern to a single dense 

area in contrast to a flight deck with several dispersed gauges.   

 



www.manaraa.com

27 
 

 
 

 

Figure 5. PFD EFIS 
 

 

The flight mode annunciator indicates the current level of automation controlling 

the aircraft at any given time.  The left box in the FMA indicates the auto throttle control.  

The middle box in the FMA indicates the horizontal or lateral control automation, and the 

right box in the FMA indicates the vertical control automation, such as “altitude hold” or 

“level change”.  Other features of the Boeing EFIS are the use of speed and altitude tapes 

that easily convey the current trend in airspeed and vertical speed of the aircraft.  The rate 

at which the airspeed or altitude tape moves is relative to the acceleration of the direction 

of travel.   

The flight director, utilized in two of the seven test runs indicates the attitude that 

the aircraft should currently be in to maintain the proper flight path as controlled by 

either the MCP alone or both the MCP and the flight management system (FMS).  The 
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pilot simply controls the aircraft attitude indicator behind the flight director and the 

proper flight path will be achieved. 

 

 Presented on the MFD is a standard navigational display that provides 

information of aircraft location in relation to navigational waypoints, airports, air stations, 

and flight path represented by a magenta line as seen in Figure 6. MFD NAV Display  

The essential value of this display is its ability to show the pilot where they are relative to 

where they are going, providing both visual and quantitative information.  Quantitative 

information is provided in terms of DME as entered by the navigational frequencies as 

well as the distance to the next waypoint.  Other quantitative information is also 

presented along the top of the NAV display including true airspeed, ground speed, and 

current heading.  Another feature that is typically found on general aviation aircraft is a 

turn coordinator, represented on the NAV display as a dotted line projected out from the 

tip of the ownship symbol that increasingly curls depending on the turn rate of the 

aircraft.   
 

 

Figure 6. MFD NAV Display 
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 The EICAS is an active state display that indicates engine fan speeds, exhaust gas 

temperatures, as well as flap and gear settings.  In the event of an engine failure, aside 

from the auditory cue of the engine shutting down, the engine information on the EICAS 

will show the engine shutting down via decreased fan speed and exhaust gas temperature.  

This display is also used to present various warnings of any sort to the pilot.  However, in 

the controlled simulation environment of this study the warnings are not utilized. 
 

 

 

 

Figure 7.   737-800 EICAS 

 
 

 The MCP is a primary physical interaction component in this study.  Depending 

on the test run, the level of aircraft flight automation is set on the MCP.  There are three 

specific modes of flight, all of which utilize the MCP in aiding in navigational flight and 

maintenance of a proper flight path.   

N1 Fan Speed 

Exhaust Gas Temperature 

N2 Fan Speed 

Trim and Spoiler Setting 

Fuel Information 

Fuel Flow 

Flaps Setting 

Gear Indicator 

Yoke and Rudder Position 
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In full autopilot flight, the pilot couples the FMS to the autopilot by engaging 

LNAV and VNAV, for vertical and lateral navigation.  To engage the autopilot the CMD 

button is pressed, and the aircraft is fully coupled to the FMS flight path.  Auto throttle is 

also controlled if it is armed, utilizing the VNAV information from the FMS.  When in 

VNAV/LNAV autopilot mode, the altitude to which the aircraft attempts to maintain is 

set by dialing the altitude into the MCP as seen in Figure 8. 737 MCP Configuration  

 

 
 

 

Figure 8. 737 MCP Configuration 

 
 

 For flight director (FD) mode only, the exact same procedure is used when setting 

the MCP for full autopilot, however, the CMD button is not pressed and the flight 

director switch is turned to “on”.  The flight director can also be used when full autopilot 

is engaged to provide vectored flight information to the pilot for the purpose of 

monitoring projected autopilot action.  To ensure that autopilot is not engaged during a 

FD test run, the disengage bar is set effectively ensuring that the CMD is completely 
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uncoupled to the flight controls.  The auto-throttle is still engaged as long as the auto-

throttle switched is turned on.   

When intercepting the localizer on an approach to a runway equipped with a 

localizer, the pilot switches the aircraft to approach (APP) mode by pressing the approach 

mode button, changing the source of information that the MCP receives flight path 

information from.  Approach mode uses navigational frequencies set either manually by 

the pilot or automatically by the FMS.  The frequency is designated for a specific runway 

localizer that the MCP then searches for.  The FMA will indicate when the MCP has 

locked onto the localizer and will then control the aircraft to follow the localizer to the 

runway regardless of what the heading or altitude is set to.  The auto throttle is still 

controlled by the set speed on the MCP when in approach mode.   

 For manual flight, no engage buttons are activated on the MCP, including the FD 

switch turned to off, the auto-throttle arm switch turned off and the disengage bar 

switched down to the off position.  All speed, heading, course, and altitude set indicators 

can still be manipulated to set the “bugs” on the PFD and MFD.  This is useful for pilots 

to see where the current aircraft state is relative to where it should be as set on the MCP.  

This is only accurate if the pilot takes the time to set the MCP for the proper speed, 

altitude and headings appropriately.  No other guidance is provided in this mode.    

 

Smarteye Eye Tracking System 

 

 To obtain quantitative eye tracking data, a Smarteye eye tracking system was 

installed and optimized inside the OPL’s 737-800 simulator.  The Smarteye eye tracker is 

a remote eye tracking system that uses facial recognition to calculate the position of 

defined points on a subjects head relative to the calibrated position of 2 or more cameras.  
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The camera’s use the facial features to locate the corners of each of the subject’s eyes and 

digitally zooms to enhance the image of the eye. 

To calculate eye gaze vectors from the head origin, infrared led’s project infrared 

light onto the pilots face, illuminating the pilots face as well as creating two ocular 

reflections; a static corneal reflection and a moving pupil reflection that moves in 

conjunction with eye movements.  By triangulating the angular difference between the 

corneal reflection and pupil reflection, the Smarteye eye tracking system can create a 

vector between the two points to create an eye gaze vector originating from the corneal 

reflection at the center of the subject’s eyes.    

The 737 flight deck utilized a 3 camera system to achieve the visual angle of eye 

tracking necessary to capture the test pilots’ gaze across the flight deck areas of interest.  

From the test pilots used in this study, the Smarteye system was optimized to achieve an 

average overall vector resolution down to approximately 1angular degree, and no greater 

than 2 angular degrees.  From the standard head position of each pilot, a length of about 

three feet separated most areas of interest from the pilots’ eyes, giving an average overall 

gaze vector resolution of approximately 0.63 inches across the flight deck.  This 

optimization allowed research to be conducted for much smaller areas of interest while 

retaining consistently accurate and precise eye tracking data.     
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Figure 9. 737 Smarteye Camera and Flasher Setup 

 

 

Design of Experiment 

 
KORD Runway 9R Approach to Land Task 

 

The main objective to the design of the experiment was to develop a series of 

flight scenarios that utilized the same flight task but could demand several different levels 

of workload from the pilot.  To accomplish this, a single approach task to Chicago 

O’Hare International airport was chosen.   

The initial point (IP) started the flight test simulation southwest of the DPA VOR 

at 10,000 feet.  Pilots were contacted by Chicago center and instructed to descend to 7000 

feet and maintain 200 knots on course to DPA.  Approximately 5 NM out from DPA 

pilots were instructed by Chicago center to contact Chicago approach at radio frequency 

119.0.  Once contact with Chicago approach was established, pilots were instructed to 

descend to 6000 feet, continue to waypoint Burke and establish the aircraft on the 

SE Camera 1 SE Camera 2 SE Camera 3 SE Flasher 1 

SE Flasher 2 
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localizer cleared for runway 9R.  Pilots then proceeded to follow the flight plan to 

waypoints Pratt and Carle.  Approximately 1 NM from waypoint Deana pilots were 

instructed by O’Hare approach to contact O’Hare tower at radio frequency 121.75.  With 

the aircraft inside the outer marker of O’Hare, pilots were cleared to land by the tower.  

The flight test engineer in the right seat of the flight deck was responsible for making 

calls to decision height at 1000, 500 and 200 feet to minimums.  Upon reaching decision 

height pilots were expected to make a land or go around call and execute the procedure 

depending on visual acquisition of the REILs.   

The KORD runway 9R approach task includes five waypoints with designated 

speeds and altitudes pilots were instructed to establish upon reaching that given 

waypoint: 
 

• DPA  – 200 knots at 7000 MSL 
• Burke  – 180 knots at 6000 MSL 
• Pratt  – 165 knots at 5000 MSL 
• Carle  – 165 knots at 4000 MSL 
• Deana  – 145 knots at 2300 MSL 

 
 
 

 

 

Figure 10. KORD 9R Approach Flight Plan 
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Pilots were instructed to maintain a sterile cockpit, keeping verbal communication 

to a minimum during each test run, speaking only during radio calls and workload 

callbacks.  A checklist was provided to the pilots listing each waypoint and the speeds 

and altitudes they are to establish upon arrival at each waypoint.  Also provided for each 

waypoint were suggested flap positions, MCP engage commands, and gear down 

instructions.   
 

 

Figure 11.  Pilot Approach and Landing Checklist 

 
 
 

 The KORD ILS runway 9R approach plate was also provided to the pilots as a 

standard in flight reference of the approach task.  The ILS approach plates give 

information to pilots in a familiar form to pilots with an IFR and above license.  It lists 

the typical clearance altitudes to be expected and distances between approach waypoints, 
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as well as radio frequencies of O’Hare approach and O’Hare towers. This information 

could be used by the pilot to pre-program the radios if so desired to make the flight tasks 

easier when asked to transfer radio contact to approach or tower.  The approach plate was 

available for all test runs and was the basis for programming the flight plan into the FMS.   
 

 

Figure 12. KORD ILS RWY 9R Approach Plate 
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Test Conditions 

 

Two methods to drive workload to show high-low workload contrasts were implemented:  
 

• Visibility condition – CAT II and CAT III 
o Land or Go Around condition 

• Level of automation 
o Full Autopilot and Auto-throttle 
o FD guidance and Auto-throttle 
o Manual approach with localizer course and glide slope guidance only 

 

For the visibility condition, outside visuals were controlled to be set to CAT II 

visibility, with no greater than 0.3 NM visibility, or set to CAT III, with no greater than 

0.1 NM visibility.  The threshold of visibility between the two visibility conditions forced 

the pilot to make a land-no land decision at decision height at 200 feet AGL.  Upon 

reaching 200 feet AGL, federal air regulations (FARs) state that the pilot must be able to 

see the runway end indicator lights (REILs) to continue to land.  If the pilot cannot see 

the REILs at 200 feet above the runway, the pilot must execute a go-around.  If the pilot 

is able to see the REILs at 200 feet AGL, then the pilot was to proceed to 100 feet AGL 

where they are required by FARs to make visual contact with the end of the runway to 

continue to land.  The variance in visibility conditions made no impact on the 100 foot 

AGL decision height.  The difficulty for the pilot is found in the time for which the 

decision to land must be made and to maintain the proper flight path to the runway with 

no outside visuals obtaining guidance strictly from the HDDs.   
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Figure 13.  Landing Visual Conditions at Decision Height 

 
 

 

 

Figure 14.  Go-Around Visual Condition at Decision Height 

 
 
 

The level of automation changed the level of effort that was required of the pilot.  

For the full autopilot condition, the pilot was simply required to monitor the position of 

the aircraft, set gear and flaps, and to set the MCP correctly at the appropriate times.  The 

MCP controlled both the yoke and the throttle, allowing the pilot to simply monitor the 

aircraft state.  This condition was designed to impose the least amount of workload on the 

pilots, since nearly all active control was handled by the MCP and FMS. 
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The FD guidance condition required the pilot to consistently watch the FD and to 

manually control the aircraft to follow the cue along the appropriate flight path.  In this 

condition, the auto-throttle was still active, so the pilot was not required to manipulate the 

throttles to maintain speed, effectively limiting the full potential of high workload 

imposed on the pilot in the flight deck.  The pilot was still required to set the MCP 

appropriately in the guidance condition.   

The manual condition imposed the greatest amount of workload on the pilot by 

providing no automation on the flight deck.  The pilot was responsible for controlling the 

yoke and the throttle of the aircraft to maintain the proper flight path and speed.  The 

pilot was allowed to use the MCP to provide speed and altitude bugs that assist in 

reminding the pilot of the speed and altitude they should be maintaining at that current 

leg of the flight plan.  The only guidance available was from the navigational radio tuned 

to the localizer and the flight plan displayed on the NAV display on the MFD.  The 

localizer, once intercepted, provides course and glide-slope deviation leading up to the 

end of the runway.   

An additional random event engine failure was included to test a pilot’s response 

to an emergency type situation.  The engine failure occurred in the right engine on the 

final approach in the same location for each pilot.  The random event test run was setup 

with full autopilot and auto-throttle with landing CAT II visibility.  The situation was 

recoverable, but required pilot intervention to maintain the appropriate flight path down 

to the runway, given the pilot recognized the engine failure in time to recover the aircraft 

safely.    

These two workload drivers of land/go around and automation condition were 

combined in an experimental matrix (that yielded varying degrees of pilot workload.  To 

add to the pilot workload each test run regardless of workload driver conditions required 

the pilot to make and receive radio calls as they would in an actual approach to O’Hare.  
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The pilot was given clearance to waypoints at specific altitudes and speeds. The pilot was 

also instructed to change radio frequencies when told to switch from Chicago center to 

O’Hare approach, and again from O’Hare approach to O’Hare tower.  Pilots were 

instructed to read back their instructions as they would typically in standard flight.   

A complex hold call was given to pilots on one of the seven test runs.  

Instructions were given to the pilot not to execute the hold, but to retain the call in 

memory for 30 seconds and to read them back at the end of the 30 second memory 

period.  This was intended to further increase pilot workload by distracting them 

cognitively.  Correct or incorrect response information was collected by the flight test 

engineers.  The hold call was presented in random order between the various test pilots. 

 

 
Subjective Workload Assessment 

 

To assess pilot workload, three subjective scales were utilized for each test run; A 

Bedford workload scale, SART, a situational awareness assessment analysis 

questionnaire, and the NASA-TLX subject demand assessment.  The subjective workload 

assessment scores provide the baseline connection between the quantitative data results 

and the pilot’s perceived workload for each test run condition.  The quantitative data 

results from the eye tracking metrics will be analyzed and regressed against the pilots 

subjective workload assessments.   

The Bedford workload scale is a 1-10 workload rating assessing the current 

workload perceived by the pilot.  The scale is a decision tree that attempts to minimize 

the workload reporting differences across pilots.  A pilot answers a series of questions to 

eventually come to a concluding Bedford workload rating as seen in Figure 15. Bedford 

Workload Scale  Workload ratings of 1 through 3 are scores of satisfactory perceived 

workload.  Ratings of 4 through 6 indicate a perceived workload that was tolerable to 
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complete the task, however, could be reasonably reduced.  Ratings of 7 through 9 

indicate a perceived workload that is not tolerable for the given task, where the pilot feels 

it is questionable whether or not the task can be completed unless the workload is 

reduced.  A workload rating of 10 is reserved for when the pilot has deemed the workload 

to be too high to complete the task at all with all available effort exerted to the given task.   

Pilots were instructed to memorize the various workload level definitions to 

prepare them to provide workload ratings mid-flight during each test run.  Pilots were 

asked to respond with a current workload upon starting each test run, and again upon 

passing each subsequent waypoint, with the last pilot reported score given after passing 

the last waypoint before landing.   

 

 
 

 

Figure 15. Bedford Workload Scale 
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 The SART assessment was administered after each test run.  It assesses the pilot’s 

situational awareness during the entire run by determining the demand on the pilot’s 

attention, the supply of the pilot’s attention, and understanding of the attentional 

resources provided to the pilot.  The overall demand is determined by ranking the 

instability, the variability and the complexity of the given flight task in its specific 

configuration.  Supply of the attentional resources is calculated with four components; 

arousal, or how stimulated the pilot was during the run, the ability of the pilot to 

concentrate on the given task, the availability of spare mental capacity, and the capability 

of the pilot to divide attention.  Understanding is a combination of three components of 

information quality, quantity, and familiarity.  All components are rated on a 0 to 7 scale, 

0 being a low score and 7 being the high score.  The overall SART score is calculated by 

summing the understanding (U) components, and subtracting the difference of the sums 

of the demand (D) and supply (S), resulting in Equation 4. SART Situational Awareness 

(SA) Equation 

 

 

 

)( SDUSA −−=  

Equation 4. SART Situational Awareness (SA) Equation 

 
 

 

 Overall, the SART assessment determines the pilot’s understanding of what was 

happening during the test run and their intuitive and experience related response to the 

condition and information presented to them.   
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Figure 16. SART Assessment Card 

 
 
 
 

  The NASA-TLX assessment, like the SART assessment, was administered after 

each test run.  It is effective in assessing the pilot’s perception of their own physical and 

mental demands during each given test run.  Also assessed is the pilot’s own perception 

of their performance.  Self assessment questions include; Mental demand, physical 

demand, temporal demand assessing the speed that was demanded during the task, the 

level of effort exerted during the task, the pilot’s level of performance in accomplishing 

the task, and the frustration experienced during the task.  The scores were based on a 0 to 

10 rating scale, with 0 being very low and ten being very high for all assessments in the 

NASA-TLX except for performance.  Performance was rated on the scale of 0 to 10, with 

0 being a perfect performance and ten being failure.  Upon summing the workload 

subscale assessments to one combined score results in reporting an overall workload 
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rating with lower scores indicating lower workload and higher scores indicating higher 

workload.   

 

 
 

 

Figure 17. NASA-TLX Assessment Card 

 

 

Participants 

  

 Test pilots were chosen based on the criteria of having a current instrument rating 

or higher.  Pilots were further selectively chosen depending on the ability of the Smarteye 

eye tracking system being able to track their gaze vectors to an acceptable resolution 

level of 2 degrees of visual angle.  This typically required pilots who did not require 

glasses, or if they did, have corrective lenses that minimized the infrared reflection back 
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into the camera.  Qualified pilots requiring corrective lenses were tested on the eye 

tracking system prior to being considered as test pilots.   

 The subject pool consisted of twelve (12) pilots, all male, ranging in age from 24 

to 60+ with all levels experience in IFR conditions.  Participants were instructed to 

review internal review board (IRB) approval for human subjects testing for this project.  

Subjects were compensated $20/hour for their time, with a subject testing session 

typically lasting no longer than four hours.   

After signing the IRB form, pilots went through a pre-flight briefing instructing 

them on the flight task, the automation condition variations, subjective reporting, and the 

physiological recording equipment that would collect their physiological response to the 

expected induced workloads experienced in each test run.  Pilots were then outfit with the 

physiological sensors, brought to the flight simulator and a head model built in Smarteye 

while the pilot was familiarized with the flight model and trained on the standard MCP 

procedures.  After the eye tracking model was validated and established in terms of 

comfort in using the systems on the flight deck, the pilot was ready to proceed with the 

flight test.   

 

Independent Variables 

 

 The two independent variables as stated above are the level of automation 

condition and the land or go around visual condition.  The automation condition was 

reduced further into two independent variables, indicating flight director “on” or “off”, 

and autopilot “on” or “off”.  The independent variables were presented to each pilot in 

random order, always including a combination of each condition and each land or go-

around decision.  Simply the order to which the pilot experienced each combination was 
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randomized to reduce the effect of the pilot’s learning curve with increased experience to 

the flight test.   

 

Dependent Variables 

 

 In contrast to the number of independent variables, there are several dependent 

variables compiled by both the literature review of eye tracking metrics and the reported 

subjective workload ratings.  The eye tracking metrics are all subsets of saccadic 

movements and fixation durations.  Calculated across the flight deck and within specific 

regions of interest there are several metrics calculated over each entire run; the total 

number of fixations, the mean fixation duration, the max fixation duration, the fixation 

frequency, and for the specific regions of interest, the fixation percentage relative to the 

total number of fixations.  Saccadic metrics include mean and max saccade length across 

the flight deck, and mean and max saccade length coming into and leaving each area of 

interest.   

 Areas of interest include; the flight mode annunciator (FMA), the attitude 

indicator (AI), the airspeed indicator (ASI), the altitude display, the heading display, the 

multi-function display (MFD), and the mode control panel (MCP).  Other metrics 

collected are the mean X and Y gaze vector component standard deviations.  The 

standard deviation of the gaze vector is calculated over a thirty (30) second period and 

outputs a value relative to the average gaze vector location.  This effectively assesses the 

spread of the data over the previous thirty seconds.  The average value of these averages 

generically indicates the spread of the scan pattern over the entire test run.   

 Link analysis is also recorded, counting the total number of links between regions 

of interest.  A link is defined for this experiment as a fixation made in one region of 

interest followed by a single saccade to another fixation within another region of interest.  
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Link analysis is calculated as a one-way transition, meaning a count between the MFD to 

the PFD is a separate count than that of the PFD to the MFD.  Link analysis is calculated 

for the following areas of interest: 

 
• MFD 
• PFD 
• MCP 
• OTW 
• NONE 
 

The area of interest ‘none’ is a combination of gaze vectors that do no intersect 

areas of interest in the defined world coordinate model defined in the Smarteye software.  

This does not include times when the gaze vector was not calculated, but only when a 

previous fixation was made somewhere outside the areas of interest, such as out the 

window or a gaze toward the pilot checklist.   
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Table 2. Subjective Responses 

Metric 

Type Metric 

BEDFORD IP - DPA 

BEDFORD DPA-BURKE 

BEDFORD BURKE-PRATT 

BEDFORD PRATT-CARLE 

BEDFORD CARLE-DEANA 

BEDFORD 
DEANA-

MINIMUMS 

BEDFORD 
AVERAGE 

BEDFORD 

SART Instability 

SART Variability 

SART Complexity 

SART Arousal 

SART Concentration 

SART 
Spare Mental 

Capacity 

SART 
Division of 

Attention 

SART 
Information 

Quality 

SART 
Information 

Quantity 

SART Familiarity 

SART SART SCORE 

NASA-TLX Mental Demand 

NASA-TLX Physical Demand 

NASA-TLX 
Temporal 

Demand 

NASA-TLX Effort 

NASA-TLX Performance 

NASA-TLX Frustration 

NASA-TLX NASA-TLX Total 
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Table 3. Eye Tracking Metric List 

 
 

Flight Test Matrix 

Table 4. Reduced Sample Flight Test Matrix 

Run Condition 

Land or 

Go 

Around 

Eye 

Tracking 

Metric 1 

Eye 

Tracking 

Metric 2 

Eye 

Tracking 

Metric 

XX 

Bedford 

Workload 

SART 

Score 

NASA 

TLX 

1 Full Auto LAND ** ** ** ** ** ** 

2 Guidance LAND ** ** ** ** ** ** 

3 Manual LAND ** ** ** ** ** ** 

4 Full Auto 
GO 

AROUND 
** ** ** ** ** ** 

5 Guidance 
GO 

AROUND 
** ** ** ** ** ** 

6 Manual 
GO 

AROUND 
** ** ** ** ** ** 

7 Full Auto 
Engine 

Failure 
** ** ** ** ** ** 
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Flight Test Results  

 

Visual scanning  

 

 Upon visual inspection of eye tracking results during flight test runs, pilots’ eye 

movements varied drastically between the various flight conditions they were subjected 

to.  Many of these differences are likely due to the different test condition requiring a 

different scan path to complete the task at hand.  The variance in flight test conditions, 

such as level of automation, is a task that requires the pilots to more frequently monitor 

the PFD in manual flight conditions to maintain safe flight relative to that of the fully 

automated condition.  Eye tracking metrics that are directly associated to workload will 

emerge in the eye tracking data regardless of task variance.  Other metrics require the 

assumption that a specific flight task demands a specific form of eye movement 

tendencies, and that a workload can be correlated to those specific tendencies which 

reflects the difficulty of the flight task.  Review of the eye tracking data set from this 

flight test is an attempt to identify which metrics effectively correlate to pilot workload 

driven by each flight condition presented.  

 

Flight performance  

 

 Under the automated condition pilots were required to press buttons at specific 

times and make the standard radio calls.  Flight performance was very standardized 

across pilots in the full automation condition.  As expected from the design of the 

experiment flight tasks, the guidance condition with auto-throttle required moderate 

interaction from the pilots, yielding some varying results across the test group.  Some 
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pilots who had experience utilizing a flight director performed the flight tasks with 

greater ease than those pilots experiencing it for the first time that day.  This experience 

related difference yielded varying subjective workload feedback from the pilots.  The 

highest reported workloads did come from the manual flight test condition, when pilots 

were required to control both the attitude of the aircraft and the speed, requiring the most 

mental cognition from the pilot to maintain the specified aircraft state at the right times 

and locations.   

Several times pilots would find themselves off-course due to the high mental 

demand required by several systems at once, such as thrust level, attitude adjustment and 

radio communication.  Diverging oscillations in recovering the flight path intercept was 

very typical across pilots in the manual condition, ultimately driving the pilots’ workload 

to higher levels on the Bedford workload scale.  

 

Flight Test Conclusions 

 

 The flight test was run as expected with no changes necessary from the first pilot 

to the last.  Like any other experiment, system malfunctions imposed minor setbacks in 

timing during some of the runs, however, did not affect the data in any significant way.  

Pilot responses indicated significant workload variance upon initial inspection of 

subjective results and verbal pilot feedback.  Collected data integrity was actively 

monitored during all flight test runs.   
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CHAPTER 4.  

DATA ANALYSIS AND ALGORITHM DEVELOPMENT 

 

Data Set 

 
 
 The data was collected and stored on removable drives on the input/output system 

(IOS) computer connected to the flight simulator. Several systems were connected to the 

data collection IOS that were used for physiological assessment as well as the simulator 

command components mentioned in chapter 3.  Several buses collected several variables 

useful in the data analysis of this study, as well as other studies with an interest in 

operator state classification, shown in Table 5.  IOS Collection Data.   

Data collection included several components not pertinent to eye tracking, but 

overall operator state through several channels of physiological output of the subject.  

The IOS included a ‘Stamp’ to separate out each data point by frame number and by 

time, ‘Run Info’ to record which data set belonged to which subject and task that each 

subject was performing, aircraft state information, instrumentation recording pilot control 

inputs, nexus physiological measurement data, recording ECG for heart-rate, respiration 

rate and depth, EMG collecting right arm deltoid flexion to collect MCP button presses 

and throttle manipulation, and the eye tracking output information from the Smarteye 

system described in greater detail in the Smarteye Eye Tracking System section of chapter 

3.   



www.manaraa.com

53 
 

 
 

The quality of the data set is very robust for all eye tracking metrics analyzed 

across the entire flight deck.  However, pre-processing software output did not provide 

consistent data for all aforementioned regions of interest.  Altitude, heading, MFD, speed, 

out the window (OTW), and MCP regions were captured and entered into the data set.  

Attitude indicator and FMA were not collected due to errors in region labeling during 

data collection and will be analyzed upon further investigation of the data set in future 

research initiatives.  The attitude indicator and FMA were not included in the regression 

and ANOVA analysis of this thesis. 
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Table 5.  IOS Collection Data 
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 Analysis of the subjective results crossed with the testing conditions indicated that 

the varying test conditions (Level of Automation, Land/Go Around) did yield a variance 

in induced workload.  Workload was assessed in real time using the Bedford workload 

scale, and post-run using the SART situational awareness assessment and the NASA-

TLX.  Analysis shows that all assessments correlate together as expected and are 

indicative of the pilot’s perceived performance and associative workload in each test run.   
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Figure 18. Boxplot of Average Bedford Score vs. Land/Go-Around, Condition 
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Figure 19. Average Bedford Workload Score Statistics 
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Figure 20. Boxplot of SART Score vs. Land/Go-Around, Condition 
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Figure 21. SART Score Statistics 
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Figure 22. Boxplot of NASA-TLX Score vs. Land/Go-Around, Condition 
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Figure 23. NASA-TLX Total Statistics 

 
 
 
 Regression of both the SART scores and NASA-TLX totals against the Average 

Bedford ratings indicates a statistically significant relationship of each of these subjective 

measures to one another.  In depth analysis is done later in this chapter of several eye 

tracking metrics against the Bedford workload scale.  Results of the regression analysis 

between these subjective measures is intended to provide evidence that any relationship 

between any eye tracking metrics analyzed applies to each subjective measure according 

to their respective calculated relationship.   
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Figure 24. Average Bedford vs. SART Score Regression 

 
 
 

 

Figure 25. Average Bedford vs. NASA-TLX Total Regression 
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Analysis Methodology  

 

 The raw data collected by the IOS was processed using preprocessing software 

written to analyze the gaze vector output and to quantify it into both saccadic movements 

and fixations.  Fixations were defined in the preprocessing software as a series of eye 

points falling within a 2 degree radius for greater than 300 milliseconds, with an outlier 

tolerance of 100 milliseconds to filter noisy data points.  Filtering creates a third 

component, called an Orphan, which is a definition used to describe quick saccadic 

movements under 100 milliseconds that break up an individual fixation.  Fixations lasting 

longer than 3 seconds were ignored in preprocessing calculations to filter out bad data. 

Saccadic movements were counted as a component linking two fixations together, broken 

down into distance in angular degrees.   

 To calculate the change in spatial spread of the fixation map/scan-path, the 

standard deviation of the gaze vector in X and Y components over a period of 30 seconds 

was determined and included as part of the output from the preprocessor.  Larger 

standard deviations in either direction indicate a larger spread in fixation density, and 

therefore a higher level of entropy in the eye movement behavior of the subject, and a 

change in the standard eye scan pattern.   

 The effort to discover a correlation between eye movement behavior and pilot 

workload encounters two obstacles when analyzing the data set collected in this study; 

the frequency of pilot subjective workload responses not being identical to the frequency 

of collection data, creating the need for interpolation, a therefore assumed error, and 

portions of data that misrepresent the actual behavior of the subjects eyes.  The latter can 

only be addressed by increasing the test population, which can be resolved by appending 

future data onto this data set.   

The first indicated problem is approached by organizing the raw data using two 

methods; analysis of the 30 seconds prior to each waypoint to capture the eye movement 
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behavior closest to the period when the pilot reported a workload, and a composite 

regression analysis of the average workload and averages of the eye tracking metrics 

across each test run.  This effectively views the data from both a generic overview, 

indicating eye movement behavior trends across pilots, and at the highest resolution 

possible, by observing each pilot individually at the point of workload response. 

Regression analysis is most favorable for algorithm development as it is capable 

of providing a direct equation to correlate the eye movement behavior.  Pilots were asked 

to report their workload to the flight test engineers upon initial start of the simulation and 

upon arrival at each waypoint, totaling six data points of subjective workload for each 

test run (1 data point / ~2 min).  The interpolation required of each regression analysis is 

therefore likely to ignore the individual short term experiences that pilots often encounter 

in standard flight.   

Composite metric analysis was also performed across pilots, analyzing several 

eye tracking metrics for each test run as a whole.  This analysis approach provides insight 

into the general trends in eye movement behavior based upon the composite values of the 

pilots’ subjective workload scales, including the Bedford workload scale, the SART, and 

the NASA-TLX.   

Metric analysis is initially reviewed by plotting each individual eye tracking 

metric for all pilots against Bedford workload score.  This allows for visual observation 

of each metric and its associated trend to increasing workload as seen in Figure 26. 

Example Boxplot of ET Metric vs. Workload (Max HDG Fixation Duration vs. 

Workload).  The complete set of boxplots created from the data set is available in the 

appendix attached at the end of this thesis. 
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Figure 26. Example Boxplot of ET Metric vs. Workload (Max HDG Fixation 
Duration vs. Workload) 

 
 

 

 Metrics indicating a correlation to increasing workload were included in a 

repeated measures ANOVA.  Bedford workload was specified as the response in a 

general linear model ANOVA, utilizing the eye tracking metrics as the model, and 

subject as the random factor.  Eye tracking metrics were down-selected based upon the 

trends observed in initial boxplot review and consistency of the metric data in the data 

set.  The down-selection was necessary due to include a balanced set of data to be 

processed, as well as the processing requirements to perform the ANOVA exceeding the 

limits of the computers used for analysis.  Metrics included in the ANOVA are: mean 
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fixation duration, max fixation duration, fixation frequency, mean saccade length and 

max saccade length.    

 

 

 

Figure 27.  Eye Tracking Metric vs. Workload Repeated Measures ANOVA 

 
 
 Analysis of variance yielded a high R-squared value for the repeated measures 

model, suggesting however, did not provide further insight into the variance of the 

measures across subjects.  This was due to unbalance in the data set values for the 

selected measures.  Further analysis using regression models was performed to gain 

increased insight into the correlation and associated variance of the eye tracking 

measures. 
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Figure 28.  Eye Tracking Metrics vs. Workload Regression Model 

 

 

 Regression analysis yields a model with moderately high correlation to workload 

with nearly statistically significant output (R-sq = 73.7%, P = 0.07).  This is suggests that 

certain metrics utilized in the regression model are capable of correlating to workload.  
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Some components were more statistically significant than others, particularly metrics 

specific to regions of interest, such as the MFD fixation frequency (P=0.054) and Max 

MCP fixation duration (P = 0.064).  These metrics and metrics specific to a given region 

of interest indicate a significantly higher level of significance to the overall regression 

model.  This provides insight suggesting that the workload on the pilot changes the pilots 

eye movement behavior specific to a given instrument, likely dependent on the situation 

inducing the workload, such as a specific task.   

 To determine the effect of task on workload, a repeated measures ANOVA was 

performed to identify the variance of the task across pilots against workload.  This was 

performed in an effort to understand the connection to flight task and a given workload.  

The flight tasks were defined previously as the independent variables condition and land 

or go around.  The condition was broken down into two binary sub categories; F/D on or 

off and Autopilot on or off.  This was done to more clearly specify what flight mode state 

the aircraft was in for the specified test run.   
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Figure 29. Task vs. Workload Repeated Measures ANOVA 

 
 
 
 
 Repeated measures ANOVA results of task versus workload indicate that 

Autopilot (R-sq = 85.82%, P=0.034) is a statistically significant factor correlating to 

workload.  F/D is also a factor, however, not to the same degree as the autopilot 

condition.  The Land or Go Around decision also provided significant effect on workload 

(P = 0.05).  Overall results of the ANOVA indicate an R-sq value of 85.82%, indicating a 

relatively strong correlation to workload.  This indicates that aircraft mode state (pilot 

task) plays a significant role in determining a pilot’s workload.  Including the aircraft 

mode state in the model to classify workload through eye movement behavior could 

potentially aid in improving the quality of the overall classification model developed. 
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 A repeated measures ANOVA combining both aircraft mode state and the eye 

tracking measures was performed to determine if there was an improvement to the 

regression model by including aircraft state information to the eye tracking model.   

 

 

 

 

Figure 30. Task + ET Metrics vs. Workload Repeated Measures ANOVA 

 
 
 
 
 Results contrasted to the ANOVA R-sq values of the eye tracking metrics 

themselves indicate an improvement in both the R-squared value as well as the R-squared 
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adjusted value.  This suggests that the general linear model is improved by including the 

aircraft mode state.  However, due to unbalance in the data set values for each metric 

included in the ANOVA, further variance analysis and statistical significance was not 

established.  Regression analysis on the eye tracking metrics used in the regression model 

earlier (Figure 28.  Eye Tracking Metrics vs. Workload Regression Model) was 

performed again with the inclusion of the aircraft mode state.   
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Figure 31. Task + ET Metrics vs. Workload Regression 

 

 

 Results of the combined regression analysis indicate an overall decrease in 

statistical significance for the regression model.  The overall R-squared value increases, 

however, the R-squared adjusted value decreases as would be expected when adding 

more variables to the model.  Without an increase in the adjusted R-squared value, the 
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significance to adding the aircraft mode state is minimal to the model generated.  F/D and 

Autopilot state modes both indicate a P value greater than 0.46 providing no statistical 

significance when combined with the metrics presently included in the model.   

 

Results Conclusion 

 

 Development of a workload algorithm driven by eye tracking metrics is the 

ultimate goal in aiding the initiative to classify operator state in real time flight deck 

operations.  Based upon this data set of pilot eye movements there is a wealth of 

information that can continue to be mined for further insights into such eye movement 

behaviors.  Information taken from this analysis of the eye movement behavior trends 

provides a significant starting point to develop a fully functional workload algorithm 

based upon eye tracking metrics.  Analysis of task and eye movement behaviors 

individually indicate that each are associated to workload in some capacity, as is shown 

in the repeated measures and regression analysis (Figure 27.  Eye Tracking Metric vs. 

Workload Repeated Measures ANOVA; Figure 29. Task vs. Workload Repeated 

Measures ANOVA).  Whether the two information sources can be combined to create an 

increasingly effective model to classify workload is still uncertain.  Several eye tracking 

metrics indicated statistical significance or near statistical significance to the regression 

model, all of which were eye movement behaviors specific to a given area of interest, 

such as Max MFD Fixation Frequency (see Figure 28.  Eye Tracking Metrics vs. 

Workload Regression Model).  To this extent, further research initiatives must be taken to 

determine which combination of areas of interest metrics are the most useful in 

classifying pilot workload.   
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CHAPTER 5.  

CATS INTEGRATION 

 

Cognitive Avionics Tool-Set (CATS) 

 

 The Cognitive Avionics Tool-Set (CATS) is a software application that provides a 

graphical user interface to organizing sets of physiological data.  Developed by Blaze 

Keller of the Operator Performance Laboratory, it has been used in a beta version format 

for several studies.  The ultimate goal of CATS is to be able to compile several sources of 

physiological data and generate analysis outputs of that data in a usable and presentable 

form.  Beyond this goal, taking all of the same physiological inputs (EEG, ECG, 

respiration rate, body temp, eye tracking, etc.) real-time analysis will provide instant 

feedback of pilot workload (Schnell, Keller, & Macuda, Application of the Cognitive 

Avionics Tool Set (CATS) in Airborne Operator State Classification, 2007).  CATS has 

been utilized in a study done by the Operator Performance Laboratory in collaboration 

with the National Research Council (NRC) of Canada.  Initial intention of CATS is to be 

used on avionics platforms as was done in a rotorcraft study in Ottawa, Ontario were 

physiological measurements were fed into CATS and organized for data analysis 

(Schnell, Keller, & Macuda, 2007).  Other applications can utilize CATS as well due to 

the underlying premise of CATS utility is to classify workload based upon physiological 

measurement, such as pilot training effectiveness (Schnell, Keller, & Poolman, Quality of 

training effectiveness assessment (QTEA); a Neurophsiologically based method to 

enhance flight training, 2008).  The underlying research which drives the classification 

model however, is specific to flight deck operations. 
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Figure 32. CATS File Selection Window 
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Figure 33. CATS Data Integrity Window 

 
  
 Data integrity is monitored by CATS by assessing the IOS recorded files and 

checking for gaps in the data.  Data is then permitted or denied into the CATS analysis 

depending on user definition within the interface.  Compromised data points can either be 

permitted to exist as gaps in the data set analysis or ignored altogether.   
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Figure 34. CATS Data Query Window 

 
 

 

 Data sets within CATS can be further broken down by querying the data in 

several ways.  Depending on the tags associated with the data set, CATS can be 

programmed to split the data depending on these tags and perform analysis strictly on that 

particular section of data as specified by the user.  This is very beneficial in eye tracking 

analysis that discriminates between phases of flight and task specific operations and their 

associated workloads.   
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Figure 35. CATS World Viewer Window 

 
 
 
  
 CATS incorporates a world viewer that is created using aircraft state information 

embedded in the IOS output files.  This is particularly useful when selecting particular 

sections of flight and performing analysis strictly on the data points associated with the 

region selected.  Aircraft state is further visible by tracking the flight path and color 

designating particular aspects of flight, such as roll (shown in Figure 35. CATS World 

Viewer Window), altitude, speed, reported workload, or any of the user specified query-

able tasks specified in the data set.   
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Figure 36. CATS Eye Tracking Histogram Window 

 

 

 Specific to eye tracking, heat mapping of fixation maps is also performed within 

CATS to aid in identifying scan patterns and particular areas of interest over a scaled 

amount of time specified in CATS user interface.  With implementation of empirical data 

analysis specific to eye gaze fixations and scan pattern, quantitative analysis will be an 

available output from the CATS software.  

Algorithm Implementation 

 

 To fuel CATS’ ability to perform analysis on each of its physiological inputs, 

groundwork must be completed to determine what forms of analysis should be made and 

what metrics are usable for meaningful analysis.  This thesis provides CATS with useful 
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information pertaining to the eye tracking facet of CATS’ physiological analysis suite.  

Acquisition and analysis of empirical data creates algorithms for each metric, and 

ultimately one metric to assess workload based upon the pertinent eye tracking metrics.   

 

Real-Time Workload Estimation 

 

 CATS currently utilizes neural analysis, eye tracking, heart rate (ECG), and flight 

performance as general metrics that feed an overall workload estimation of the subject 

being analyzed.  Development of regression models in eye tracking is utilized in CATS 

from this research, derived from empirical data collected in this study.  For real time 

assessment of the pilots’ fixation behavior, the average duration of fixations can be 

calculated for a window of 15 seconds, which typically includes a series of 10 to 20 

fixations sufficient enough to provide a statistically significant average.  The real time 

fixation behavior variables are then assessed based upon empirical analysis following the 

results of this research initiative with coefficients dependent on relativity to the 

normalization of these behaviors.  

 

Utility of Algorithm for Real-Time Classification 

 

The regression models developed based upon the composite results of this study is 

statistically significant and can be utilized as a classifier algorithm to be validated in real-

time assessment tests in future studies.  See Error! Reference source not found.Figure 

26. Subject 2 Waypoint Regression Analysis, Error! Reference source not 

found.Figure 27.  Subject 7 Waypoint Regression Analysis and Error! Reference 

source not found.Figure 31. Fixation Frequency Composite Regression.  The 
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coefficients relating each metric analyzed are the important components to generating a 

general real-time classification algorithm.   

For analysis of real-time classification, it is recommended to use a window of 

time to perform general statistics of the various metrics that make sense.  Average 

fixation duration was calculated over a moving time frame of 15 seconds to be able to 

capture enough fixations to produce a significant average of the metric.  Entropy was 

calculated with a moving time frame of 30 seconds, since it is a metric assessing the 

variability that exists in a scan pattern or the spread of fixations.  Shorter time frames for 

this metric will not provide enough time for a pattern to be recognizable, yielding no 

significance to the standard deviation values, but too long of a time frame will not be 

capable of observing the short term changes in fixations that occur in flight deck 

operations.   
 

Industry Utilization of Operator State Classification Information 

 
 There are several applications that are capable of utilizing real-time operator state 

classification.  Training of pilots can be enhanced by importing knowledge of the 

student’s workload, allowing the instructor to increase or decrease the pace of the training 

to maximize the efficiency of the training for the student based upon their cognitive 

capacity.  Allowing the avionics of flight decks to be aware of the pilot’s cognitive state 

provides an entirely new avenue for avionics to follow; adaptive automation systems, 

enhanced visual ergonomics that adapt to rare situations such as unusual attitude, pilot 

attention retention systems, sleep mitigation systems, etc.   
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CHAPTER 6.  

FUTURE RESEARCH 

 

Further Initiatives to Be Pursued 

  

Analysis of potentially useful metrics, such as eye blinks should be pursued.  Eye 

blinks were not analyzed due to eye tracker outputs not transmitting the correct data to be 

recorded in the data set.  Unfortunately this was unrecoverable for any of the subjects in 

this study, and it still holds strict interest due to eye blink as a metric being a very rich 

source of operator state information in previous studies.   

Continued research of the present data set could be pursued to further the 

interaction effects of the various areas of interest.  Further preprocessing of the data must 

be completed to fully fill the data set so balanced ANOVAs can be performed to gain full 

insight of variance across subjects for all eye tracking metrics.  A stepwise regression 

would also be beneficial in determining which metrics yield the greatest impact on the 

regression model against workload.  Validation of the data set regression models should 

also be completed to determine the overall effectiveness of a developed model based 

upon this data set. 

 A similar study could be performed with a new method to induce workload and 

collect the subjective baseline results at a higher resolution than was done with the 

Bedford workload ratings collected in this study (1 data point / 2 min).  A possible 

approach would include shorter test runs with a precisely induced workload enforced 
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upon the pilot. A post run subjective response would be sufficient to produce a subjective 

baseline to regress against.  This is necessary to attain increasingly accurate real-time 

analysis algorithms for any physiological response system such as an eye tracker.  A 

bottom up approach study could be done that induces workload in a situation by situation 

manner that requires pilots to react and that reaction could tag a set of data and their 

associative metrics.  Bottom line requires a closing of the gap between data collection 

rates and subjective workload response rates to limit the error brought about by 

regression interpolation of real-time metrics.   

 This study provides a simple insight into the trends of eye movement metrics as 

they respond to induced workload in a cockpit performing an approach task.  Further 

studies to determine which metrics are useful in classifying workload during specific 

tasks and which metrics classify workload generically can still be completed.   Further 

research initiatives can also be done to assess the connection between standard eye 

movement behaviors in a flight deck as they pertain to individual tasks versus workload.  

It is believed that certain tasks performed on the flight deck induce specific eye 

movement behaviors.  If this is the case, it is theoretically possible to assume that 

changes in expected eye tracking behavior may occur depending on the flight task, such 

as cruising and performing an approach.   
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Figure A1. Mean Fixation Duration vs. Workload Boxplot 
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Figure A2. Global Fixation Frequency vs. Workload Boxplot 
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Figure A3. Mean Saccade Length vs. Workload Boxplot 
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Figure A4. Max Saccade Length vs. Workload Boxplot 
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Figure A5. Mean Airspeed Fixation Duration vs. Workload Boxplot 
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Figure A6. Max Airspeed Fixation Duration vs. Worklaod Boxplot 
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Figure A7. Airspeed Fixation Frequency vs. Workload Boxplot 
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Figure A8. Mean Altitude Fixation Duration vs. Workload Boxplot 
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Figure A9. Max Altitude Fixation Duration vs. Workload Boxplot 
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Figure A10. Altitude Fixation Frequency vs. Workload Boxplot 
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Figure A11. Mean Heading Fixation Duration vs. Workload Boxplot 
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Figure A12. Heading Fixation Frequency vs. Workload Boxplot 
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Figure A13. Mean OTW Fixation Duration vs. Workload Boxplot 
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Figure A14. Max OTW Fixation Duration vs. Workload Boxplot 
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Figure A15. Mean MCP Fixation Duration vs. Workload Boxplot 
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Figure A16. Max MCP Fixation Duration vs. Workload Boxplot 
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Figure A17. MCP Fixation Frequency vs. Workload Boxplot 
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Figure A18. Mean MFD Fixation Duration vs. Workload Boxplot 
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Figure A19. Max MFD Fixation Duration vs. Workload Boxplot 
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Figure A20. MFD Fixation Frequency vs. Workload Boxplot 
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Figure A21. Mean Y StdDev vs. Workload Boxplot 
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Figure A22. Mean X StdDev vs Workload Boxplot 

 
 
 

 
Figure A23. NASA-TLX vs. Bedford Regression 
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Figure A24. SART vs. Bedford Regression 
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Figure A25.  Global Composite Metric Repeated Measures ANOVA 
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Figure A26. ET Metric vs. Workload Regression 
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Figure A27. ET Metrics vs. Workload Repeated Measures ANOVA 
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Figure A28. Task + ET Metrics vs. Workload Regression 
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Figure A29. Task + ET Metrics vs. Workload Repeated Measures ANOVA 
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Figure A30. Task (including land decision) vs. Workload ANOVA 
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Figure A31. Task (incl. land decision) vs. Workload Repeated Measures ANOVA 
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